归纳推理是最考验物流规划能力的地方,这里一方面需要专业能力将需要规划的场景进行拆分,同时又需要用规划或者行业经验对其进行修正判断,哪些是主要问题,哪些是次要问题,需要快速鉴别,否则会“迷失”在大量的细节里。那么如何去进行归纳推理?我认为还是以环节、流程和活动的角度考虑,这也就是为什么物流是实践与理论深度结合专业的原因,只有理论,没有实践,则缺乏判断力,只有实践,没有理论,则缺乏系统性。这里我们可以学习“战略地图”模型、SCOR模型,前者的分类和组合非常清晰,围绕目标构建相应的要素,而后者将供应链的流程“完美”呈现,并且可根据目标进行配置,同时还能通过系统性评价进行决策,往上可到战略,往下可到信息化。我们通过对供应链物流拆分的活动,结合客户的实践问题进行组合和详细分析后,在通过设计原则和系统分析方法,找到解决问题的关键点,构建规划蓝图,再系统性的对每个要素进行描述,这样可以通过归纳推理的方式进行合理规划。
每一个规划项目的目标不同,所涉及的要素也不同,逻辑也有区别,一定要根据具体的项目进行合理的拆分和组合。
步骤六:构建模型(工具应用)
这里所说的构建模型主要是指的数学模型,当然,也不一定是每个规划项目都需要独立构建数学模型,有的规划项目通过做数据分析就能支撑规划的观点。但是有的规划项目,比如选址、网络布局、路径优化、以及资源配置相关的内容,就需要进行构建数学模型求解,得到相对比较精确的结果。构建模型可以由物流专家独立完成,也可以是团队多人完成,物流专家专注于构建好解决方案,然后建模工程师构建数学模型。也可以通过规划工具的应用来进行求解和可视化呈现,比如使用我们的物流规划与决策系统(供应链物流数字化决策平台)作为辅助。如果对于专业能力要求高一点,学习时间比较充裕,建议可以多将运筹思想和物流项目实践进行深度结合,多体会两者之间的关系,同时尝试使用数学工具,比如MATLAB进行简单算法编写和求解,其目的并不一定成为数学建模高手,而在于可以从物流专业和数学建模两者结合的角度来思考科学性的规划思路,有利于对项目的规划思路进行扩展和效率的提高。从我个人的切身体会来看,在具备建模、算法编写并通过程序实现的能力后,对于物流规划思维上的提升是巨大的。
步骤七:解决方案
解决方案可以分两个层面,一个是概念方案(规划蓝图),一个是详细方案。概念方案主要是将根据物流专家的经验,结合详细调研后的详细分析,通过定性与定量结合,制定一个远景规划,展现通过规划后项目能达到什么样目标,同时每个模块达到什么样的效果,相互之间如何关联。比如智能工厂中的原料仓用什么样的模式,实现什么功能,产线如何配送,成品仓采用什么模式和功能实现,整个规划又是采用什么架构和思想等。详细设计中,根据项目的类型和客户的需求采取相应的方案设计策略,比如战略规划中可以考虑到战略的举措和战略的实施;网络规划中,库存如何分布,车辆路径如何等;智能工厂物流中每个作业流程如何完成。
不管是概念方案和详细设计,除了专业技能的应用外,还需要强调方案的逻辑和系统性。前面的分析部分需要和解决方案进行对应,这样不管是看方案的客户还是做方案的团队(有的项目客户成员也会在规划团队中)都会在一个体系中完成,对于规划的顺利推进以及项目内容的补充和调整都会非常清楚,并快速找到解决的方法。